Search results for "effect [kinematics]"
showing 10 items of 137 documents
From monolayer to multilayer N-channel polymeric field-effect transistors with precise conformational order
2012
Monolayer field-effect transistors based on a high-mobility n-type polymer are demonstrated. The accurate control of the long-range order by Langmuir-Schafer (LS) deposition yields dense polymer packing exhibiting good injection properties, relevant current on/off ratio and carrier mobility in a staggered configuration. Layer-by-layer LS film transistors of increasing thickness are fabricated and their performance compared to those of spin-coated films.
Two-Step Solution-Processed Two-Component Bilayer Phthalocyaninato Copper-Based Heterojunctions with Interesting Ambipolar Organic Transiting and Eth…
2016
International audience; The two-component phthalocyaninato copper-based heterojunctions fabricated from n-type CuPc(COOC8H17)(8) and p-type CuPc(OC8H17)(8) by a facile two-step solution-processing quasi-Langmuir-Shafer method with both n/p- and p/n-bilayer structures are revealed to exhibit typical ambipolar air-stable organic thin-film transistor (OTFT) performance. The p/n-bilayer devices constructed by depositing CuPc(COOC8H17)(8) film on CuPc(OC8H17)(8) sub-layer show superior OTFT performance with hole and electron mobility of 0.11 and 0.02 cm(2) V-1 s(-1), respectively, over the ones with n/p-bilayer heterojunction structure with the hole and electron mobility of 0.03 and 0.016 cm(2) …
Variation Mode and Effect Analysis: a Practical Tool for Quality Improvement
2006
This paper describes a statistically based engineering method, variation mode and effect analysis (VMEA), that facilitates an understanding of variation and highlights the product/process areas in which improvement efforts should be targeted. An industrial application is also described to illustrate how the VMEA can be used for quality improvement purposes. Copyright © 2006 John Wiley & Sons, Ltd.
Application of advanced thermodynamics, thermoeconomics and exergy costing to a Multiple Effect Distillation plant: In-depth analysis of cost formati…
2015
Abstract The high thermal energy consumption per m3 fresh water is one of the main barriers to the spread of thermally driven desalination processes and has limited their use to applications in countries with high reserves of fossil fuels or to specific technological solutions like dual purpose cogeneration plants and solar desalination systems. Being energy conversion efficiency a major issue to improve the performance of thermally driven desalination plants, thermoeconomic analysis has been attracting the efforts of researchers for the identification of margins for process improvement. In this paper a rigorous exergy and thermoeconomic analysis is presented for an 8 effect forward feed Mu…
Know your full potential: Quantitative Kelvin probe force microscopy on nanoscale electrical devices
2018
In this study we investigate the influence of the operation method in Kelvin probe force microscopy (KPFM) on the measured potential distribution. KPFM is widely used to map the nanoscale potential distribution in operating devices, e.g., in thin film transistors or on cross sections of functional solar cells. Quantitative surface potential measurements are crucial for understanding the operation principles of functional nanostructures in these electronic devices. Nevertheless, KPFM is prone to certain imaging artifacts, such as crosstalk from topography or stray electric fields. Here, we compare different amplitude modulation (AM) and frequency modulation (FM) KPFM methods on a reference s…
Identifying Causal Effects via Context-specific Independence Relations
2019
Causal effect identification considers whether an interventional probability distribution can be uniquely determined from a passively observed distribution in a given causal structure. If the generating system induces context-specific independence (CSI) relations, the existing identification procedures and criteria based on do-calculus are inherently incomplete. We show that deciding causal effect non-identifiability is NP-hard in the presence of CSIs. Motivated by this, we design a calculus and an automated search procedure for identifying causal effects in the presence of CSIs. The approach is provably sound and it includes standard do-calculus as a special case. With the approach we can …
Synthesis of Graphene Nanoribbons by Ambient-Pressure Chemical Vapor Deposition and Device Integration
2016
Graphene nanoribbons (GNRs), quasi-one-dimensional graphene strips, have shown great potential for nanoscale electronics, optoelectronics, and photonics. Atomically precise GNRs can be "bottom-up" synthesized by surface-assisted assembly of molecular building blocks under ultra-high-vacuum conditions. However, large-scale and efficient synthesis of such GNRs at low cost remains a significant challenge. Here we report an efficient "bottom-up" chemical vapor deposition (CVD) process for inexpensive and high-throughput growth of structurally defined GNRs with varying structures under ambient-pressure conditions. The high quality of our CVD-grown GNRs is validated by a combination of different …
Liquid-phase alkali-doping of individual carbon nanotube field-effect transistors observed in real-time
2011
The carbon nanotube (CNT) is known to be very sensitive to changes in its surrounding environment. Our study is on the effects of mild, liquid-phase alkali-doping on electronic transport in individual CNTs. We find clear and consistent reversal from p- to n-type behavior, with all seven investigated CNT field-effect transistors (FETs) retaining a similar ON/OFF ratio and subthreshold slope. We have also measured the realtime electronic response during liquid-phase doping, and demonstrate detection of alkali cations with a signal response that ranges over more than three orders of magnitude. The doping is fully reversible upon exposure to oxygen, and the doping cycle is repeatable. We also c…
CMOS-compatible nanoscale gas-sensor based on field effect
2009
The integration of a solid state gas sensor of the metal oxide sensor type into CMOS technology still is a challenge because of the high temperatures during metal oxide annealing and sensor operation that do not comply with silicon device stability. In the presence of an external electric field sensor sensitivity can be controlled through a change of the Fermi energy level and consequently it is possible to reduce the operation temperature. Based in this effect, a novel field effect gas sensor was developed resembling a reversed insulated : gate field effect transistor (IGFET) with the thickness of gas sensing layer in the range of the Debye length (L D ). Under these conditions the control…
Trajectory tracking for an Ultralight WIG
2007
In this paper we present our research about a particular ultralight WIG. We have carried out the design of a Flight Control System that has to fix the control variables trend through a non-linear mathematical model, because of the particular geometric and aerodynamic configuration of this WIG. So, the non-linear mathematical model design has to reproduce exactly the aircraft behaviour either OGE or IGE. In particular, through classical semi-empirical relations, analytical equations have been obtained in order to evaluate incidence variations, downwash and upwash angles due to the ground. In the present paper only longitudinal dynamic is considered, because of its peculiarity in WIG's aircra…